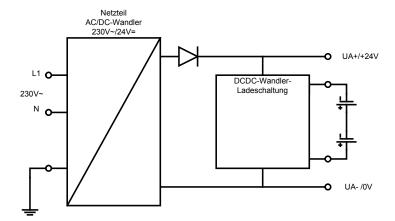


Ausfallsichere Stromversorgungen für ungesicherte Netze


→ PLG - Akku gepuffertes Netzgerät

- > 24 V-Netzgerät mit Akkupufferung
- > Verwendbar für Blei- und Gel-Akkus der Kapazitäten von 1,2 Ah bis 38 Ah
- › Ausgangsspannung ist unabhängig vom Ladezustand des Akkus
- › Kurzschluss- und Überlastfestigkeit des Ausgangsstroms
- Hoher Wirkungsgrad durch Mikrocontrollergestütztes Laden und Entladen des Akkus
- › Integrierter Tiefentlade- und Verpolschutz für den Akku
- › Höhere Akku-Lebensdauer durch optionalen Temperaturfühler
- > Betriebs- und Ladezustandsüberwachung über LEDs und potentialfreien Kontakt
- Montage auf DIN-Schiene

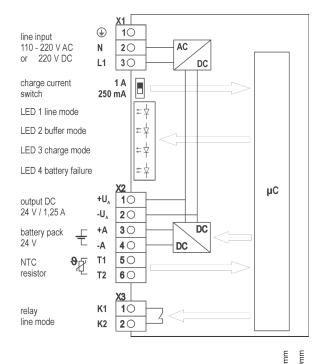
🔷 Technische Beschreibung des PLG

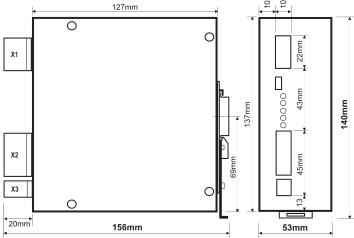
Die gepufferte Gleichstromversorgung der Typenreihe PLG nutzt zur Speicherung externe Blei- oder Gel-Akkus. Bei vorhandener Netzspannung stellt das PLG die Ausgangsspannung U_A zur Verfügung und lädt den Akku bzw. erhält dessen Ladung. Der Laststrom ist hierbei unabhängig vom Ladezustand des Akkus.

Das mikroprozessorgesteuerte Ladeverfahren mit I-U-Kennlinie sorgt für eine möglichst schonende Ladung des Akkus. Bis zum Erreichen der Ladeschlussspannung U_{AL} wird mit dem von der Akkukapazität abhängigen maximalen Strom I_{AL} geladen. Anschließend wird der Ladestrom reduziert, so dass die Akkuspannung auf der Ladeschlussspannung gehalten wird. Bei Umgebungstemperaturen < 10°C und > 35°C sollte der optional erhältliche Temperatursensor eingesetzt werden, um eine zusätzliche Temperaturkompensation der Ladeschlussspannung zu gewährleisten. Der maximale Ladestrom ist über einen Schiebeschalter an die Kapazität des Akkus anpassbar.

Fällt die Netzspannung aus, wird die Ausgangsspannung mit dem internen DC/DC-Wandler aus der Akkuspannung erzeugt. Gleichzeitig wird der Netzspannungsausfall durch eine LED und ein Melderelais signalisiert. Der Pufferbetrieb wird solange aufrechterhalten, bis der Netzbetrieb wieder möglich ist oder die Entladeschlussspannung U_{AE} des Akkus erreicht wird. Bei Unterschreitung der Entladeschlussspannung U_{AE} des Akkus, wird die Ausgangsspannung abgeschaltet (Tiefentladeschutz). Ein neuer Pufferzyklus ist erst wieder möglich, nachdem der Akku etwa 70% geladen und damit der Gerätestatus "Akku bereit" erreicht wurde.

Technische Daten


Nenneingangsspannung	110 / 230 V AC; 220 V DC	
Eingangsspannungsbereich	90 - 264 V AC; 47 - 63 Hz	
	127 - 370 V DC	
Nenneingangsstrom (bei Volllast)	1,8 A @ 115 V AC	
	1 A @ 230 V AC	
max. Einschaltstrom	60 A @ 230 V AC für < 1 ms	
	30 A @ 115 V AC für < 1 ms	
Leckstrom (L1,N → Erde)	< 200 μΑ	
Wirkungsgrad bei Netzbetrieb	> 83% bei Nennausgangsleistung	
Ausgangsnennspannung	24 V DC	
Ausgangsnennstrom	1,25 A @ 1,2 A Ladestrom	
	2,2 A @ 250 mA Ladestrom	
Netzbetrieb		
Ausgangsspannung U _n	24,2 V DC ± 2 %	
max. Ausgangsstrom bei vollständig		
geladenem Akku	2,5 A	
Pufferbetrieb		
Ausgangsspannung U _{OB}	23,3 V DC ± 2 %	
max. Ausgangsstrom	1,25 A	



Übergang von Netz zu Pufferbetrieb		
Ausgangsspannung U _{ns} bei		
Spannungseinbruch	> 21,0 V; t < 50 ms	
Nennausgangsleistung	30 W	
max. Ausgangsleistung < 10 s	66 W	
Restwelligkeit (Ripple & Noise, P-P)	< +/- 200 mV	
Regelabweichung bei Netzschwankungen	< +/- 200 mV	
Regelung bei Lastschwankungen		
(bei Netz und Pufferbetrieb)	< +/- 300 mV	
Nennspannung Akku	24 V	
Ladeverfahren	I-U-Kennlinie	
Ladeschlussspannung	27,6 V +/-2% @ 20°C	
, ,	+ Toleranz des Temperaturfühlers	
Ladestrom I _{AI}	250 mA / 1,2 A (umschaltbar)	
Entladeschlussspannung U _{AE}	20 V	
Spannung für Akku-Fehler Ü	< 17 V	
Belastbarkeit der Relaiskontakte	2 A @ 30 V DC	
	2 A @ 230 V AC	
	0,5 A @ 110 VDC	
	0,3 A @ 220 VDC	
Isolationswiderstand	0,071 3 220 100	
Primärseite gegen Sekundärseite und		
Primärseite gegen Funktionserde und		
Sekundärseite gegen Funktionserde	100 MΩ @ 500 V DC nach EN 60950-1	
Isolationsspannung effektiv	100 19132 © 300 V DO HUCH EN 00000 1	
Primärseite gegen Sekundärseite	4 kV AC / 1 min nach EN 60950-1	
Primärseite/Sekundärseite gegen	TRV 707 THIII HUGH EN 00000 T	
Funktionserde	1,5 kV AC / 1 min nach EN 60950-1	
Tullikuollooruo	170 KV 710 / 1 mm muon Erv 00000 1	
EM Verträglichkeit		
Störfestigkeit gemäß	EN 61000-6-2, EN 61000-4-2,3,4,5,6,8,11	
Störabstrahlung gemäß	EN 61000-6-4, EN 55011 Klasse B, EN 55022 Klasse B	
Netzrückwirkung gemäß	EN 61000-3-2,3	
33		
Anschlussklemmen	steckbar	
Leiterquerschnitt starr oder flexibel		
ohne Adernendhülsen	0,2 2,5 mm ²	
mit Adernendhülsen	0,25 2,5 mm ²	
Umgebungsbedingungen		
Betriebstemperaturbereich/Feuchte	-10 +55°C / 2090% RH (nicht kondensierend)	
•	nach IEC 60068-2-3	
Lagertemperaturbereich/Feuchte	-20+70°C / 1095% RH	
3	nach IEC 60068-2-3	
Vibrationen	10 ~ 500 Hz, 2 G für 10 min / einmalig nach	
	IEC 60068-2-6, IEC 60068-2-26, IEC 60068-2-27	
Schutzart	IP 20 u. EN 60529	
Montage	auf Hutschiene TS35 nach EN60715	
Abmessungen (H x B x T) [mm]	137 x 53 x 160	
Gewicht	ca. 600 g	
337710111	Jul. 200 g	

PLG - AKKU GEPUFFERTES NETZGERÄT

Klemmenbelegung / Maßzeichnung

Maße im mm

Technische Änderungen vorbehalten

Bestellbezeichnung

Artikelnummer	Bezeichnung	Beschreibung
109PLG060-5B	PLG 60-230/24	Pufferladegerät
109ZAPB01T	AP-PB-24V-01Ah-T	Akkupack für Hutschienenmontage 1,2 Ah, 24 V inkl. Temperaturfühler
109ZAPB01X	AP-PB-24V-01Ah	Akkupack für Hutschienenmontage 1,2 Ah, 24 V ohne Temperaturfühler
109ZAPB07T	AP-PB-24V-07Ah-T	Akkupack für Hutschienenmontage 7 Ah, 24 V inkl. Temperaturfühler
109ZAPB07X	AP-PB-24V-07Ah	Akkupack für Hutschienenmontage 7 Ah, 24 V ohne Temperaturfühler
109ZTF01	TF01-M3-2	Temperaturfühler, Montage M3-Gewinde, inkl. 2 m-Anschlussleitung

→ Kontakt

